Search results for "Molecular cloud"
showing 10 items of 34 documents
Detection of X-ray flares from AX J1714.1-3912, the unidentified source near RX J1713.7-3946
2018
Molecular clouds are predicted to emit nonthermal X-rays when they are close to particle-accelerating supernova remnants (SNRs), and the hard X-ray source AX J1714.1-3912, near the SNR RX J1713.7-3946, has long been considered a candidate for diffuse nonthermal emission associated with cosmic rays diffusing from the remnant to a closeby molecular cloud. We aim at ascertaining the nature of this source by analyzing two dedicated X-ray observations performed with Suzaku and Chandra. We extracted images from the data in various energy bands, spectra, and light curves and studied the long-term evolution of the X-ray emission on the basis of the ~4.5 yr time separation between the two observatio…
XMM-Newton observation of the supernova remnant Kes 78 (G32.8-0.1): Evidence for shock-cloud interaction
2017
The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended HESS gamma-ray source HESS J1852-000. The X-ray emission from the remnant has been recently revealed by Suzaku observations, which have shown indications for a hard X-ray component in the spectra, possibly associated with synchrotron radiation. We aim at describing the spatial distribution of the physical properties of the X-ray emitting plasma and at revealing the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also aim at investigating the origin of the gamma-ray emission, which may be Inverse Compton radiation associated wi…
Deep XMM-Newton Observations Reveal the Origin of Recombining Plasma in the Supernova Remnant W44
2019
Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resolved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained f…
New Pre-Main Sequence Candidates in the Taurus-Auriga Star Forming Region
2007
Aims. We have studied the X-ray source population of the Taurus Molecular Cloud (TMC) to search for new members of the Taurus-Auriga star forming region. Methods. Candidate members have been selected among the X-ray sources detected in 24 fields of the XMM-Newton Extended Survey of the Taurus Molecular Cloud, having an IR counterpart in the 2MASS catalog, based on color-magnitude and color-color diagrams. Their X-ray spectral properties have been compared with those of known members and other X-ray sources in the same fields but without a NIR counterpart. A search for flare-like variability in the time series of all new candidates and the analysis of the X-ray spectra of the brightest candi…
The XMM-Newton Optical Monitor survey of the Taurus molecular cloud
2007
The Optical Monitor (OM) on-board XMM-Newton obtained optical/ultraviolet data for the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST), simultaneously with the X-ray detectors. With the XEST OM data, we aim to study the optical and ultraviolet properties of TMC members, and to do correlative studies between the X-ray and OM light curves. In particular, we aim to determine whether accretion plays a significant role in the optical/ultraviolet and X-ray emissions. The Neupert effect in stellar flares is also investigated. Coordinates, average count rates and magnitudes were extracted from OM images, together with light curves with low time resolution (a few kiloseconds). For a …
H-2, H-3(+) and the age of molecular clouds and prestellar cores
2012
Measuring the age of molecular clouds and prestellar cores is a difficult task that has not yet been successfully accomplished although the information is of paramount importance to help in understanding and discriminating between different formation scenarios. Most chemical clocks suffer from unknown initial conditions and are therefore difficult to use. We propose a new approach based on a subset of deuterium chemistry that takes place in the gas phase and for which initial conditions are relatively well known. It relies primarily on the conversion of H 3 + into H 2D + to initiate deuterium enrichment of the molecular gas. This conversion is controlled by the ortho/para ratio of H2 that i…
Oxygen depletion in dense molecular clouds: a clue to a low O2 abundance?
2011
Context: Dark cloud chemical models usually predict large amounts of O2, often above observational limits. Aims: We investigate the reason for this discrepancy from a theoretical point of view, inspired by the studies of Jenkins and Whittet on oxygen depletion. Methods: We use the gas-grain code Nautilus with an up-to-date gas-phase network to study the sensitivity of the molecular oxygen abundance to the oxygen elemental abundance. We use the rate coefficient for the reaction O + OH at 10 K recommended by the KIDA (KInetic Database for Astrochemistry) experts. Results: The updates of rate coefficients and branching ratios of the reactions of our gas-phase chemical network, especially N + C…
X-ray emission from stellar jets by collision against high-density molecular clouds: an application to HH 248
2015
We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts against a dense molecular cloud. This scenario may be usual for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud by 2D axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig-Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 10 MK, consistent with producti…
The Gaia-ESO Survey: Dynamics of ionized and neutral gas in the Lagoon nebula (M 8)
2017
Aims. We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M 8), using VLT-FLAMES data from the Gaia-ESO Survey. The new data permit exploration of the physical connections between the nebular gas and the stellar population of the associated star cluster NGC 6530. Methods. We characterized through spectral fitting emission lines of Hα, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES-Giraffe and UVES spectrographs, on more than 1000 sightlines toward the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet …
Overionization in X-ray spectra: a new paradigm for Mixed-Morphology SNRs
2011
Mixed-morphology SNRs are characterized by a shell-like radio emission, a centrally peaked X-ray morphology, and by interaction with molecular clouds. Many models have been proposed to explain these peculiar remnants, but their physical origin is still unclear. The recent discovery of over-ionized (i. e. recombining) ejecta in 3 mixed-morphology SNRs has dramatically challenged all the previous models and opened up new, unexpected scenarios. I review the main properties of these remnants and their peculiar X-ray spectral properties. I also discuss the hydrodynamic model developed to explain the presence of over-ionized ejecta in W49B and present a list of open issues that still need to be c…